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Abstract-The scattering of elastic waves in a plate by a distribution of inclusions and/or cracks
within a finite zone is studied by a combination of analytical and finite element methods. The
incident field is generated by either a time harmonic beam of finite width or guided waves. A part
of the plate containing the inclusions/cracks (interior region) is modeled by conventional finite
elements. The far-field (ellterior region) is approllimated by a number ofguided (Lamb) wave modes
with real wave numbers. The scattered and total fields (displacements and stresses) are obtained by
matching the two regions to satisfy the displacement and stress comp:ltibilities at the near field-far
field boundary. Numerical results are presented showing the effects of cracks and inclusions in a
plate.

I. INTRODUCTION

Plates containing inclusions such as rivets and welds are often used in industry. Cracks in
plates. especially those with inclusions, are also common place. Whenever inclusions and/or
cracks are present in any structure two important questions often asked are: (I) can the
very small cracks/inclusions be detected? and (2) what is the effect of cracks/inclusions on
the stiffness of the plate? Ultrasonic non-destructive evaluation (NDE) is a very useful
technique for detecting subsurface cracks/inclusions and measuring the resulting stiffnes~

changes (Duke et al., 1986). But except for highly idealized cases it is very difficult and
sometimes impossible to obtain analytical solutions to the problems with inclusions and
cracks. The problem is also very difficult to solve by finite element methods as inclusions/
cracks are usually present in a very small region of a plate with very large lateral
dimensions. The best way to solve the problem will be to take advantages of both the finite
element and analytical methods. In this study an approach is pursued with the ultimate
objective of detecting cracks/inclusions in a plate and to assess the effects of inclusions,'
cracks on the plate stiffness. The solution to the corresponding anti-plane problem was
presented by Karim et al. (1992); references to previous studies for related problems can
be found in Paskaramoorthy et al. (1989) and also in Karim et al. (1992).

In recent years considerable progress has been made in understanding the ultrasonic
NDE experiments. Most of the ultrasonic NDE studies, however, were limited to acoustic
microscopy (Kundu, 1988) and leaky Lamb wave (Karim et a/., 1990) experiments, where
test specimens are submerged in a fluid. For most real life structures such as airplanes and
automobiles, it is unrealistic to submerge the whole structure under a fluid for NDE
purposes. A more realistic idea is to attach a source transducer at some point on the surface
of the structure and to detect the resulting surface response by a receiving transducer placed
at some other point. Traditionally, noise generated by such a setup was too great to be
separated from the signal. Recently, Duke et al. (1986) have perfected such an experimental
setup whereby noise to signal ratio is reduced to a low value. In this study, we will present
a near field finite element analysis combined with the far field analytical solution to simulate
the surface source/surface receiver ultrasonic NDE experiments. We will restrict ourselves
to solving the direct problem, Le. calculating the surface response due to applied surface
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source on a plate with a known distribution of cracks and or inclusions. Once the solution
of the direct problem is obtained. solution of the inverse problem. namely detecting cracks
(not necessarily parallel to the plate surface). and estimating resulting stiffness reduction is
straightforward (Tang and Henneke. 1989: Karim et al.. (990).

In the past most of the studies involving interior and exterior regions for wave scattering
by cracks and inclusions were devoted to either half-space or full space (Avanessian et a/ ..
1989). Only Paskaramoorthy et al. (1989) studied the flexural wave scattering by a through
crack in a plate. In most of these studies eigenfunction expansions for the wave equations
were usd to simulate the far-field behavior. Karim ct al. ( 1992) were the first to propose
the idea of using guided waves with real roots to simulate the far-field behavior in such an
analysis. Using guided waves has a distinct advantage over using wave function expansion
in plate problems: they automatically satisfy the stress-free boundary conditions thereby
avoiding the complicated zero-energy integrals prescribed to satisfy the traction-free bound­
ary conditions in global-local finite element analysis (Avanessian et al., 1989).

In the numerical model. a finite region containing all the indusions and cracks is
modeled by eight node isoparametric tinite clements. The singularity characteristics of the
crack tip arc modeled by quarter point elements (Henshell and Shaw. 1975: Barsoum, 1976)
and one row of transition elements (Lynn and Ingratl'ea, (978). In the exterior region. the
radiated fields are modeled by Lamb waves. which satisfy the stress-free boundary con­
ditions at the plate surfaces. Only Lamb waves with the real wave nUl11bers arc considered.
The contributions due to guided waves with complex wave numhers arc neglected as their
c1rects on the overall solution arc very small if the tinite element zone is sulliciently large.
Only time harmonic problems are considen:d in the present study. The time histories can
he easily ohlaincd from the time harmonic results hy means of highly ellicient fast Fourier
transform (FFT) algorithm.

2. J-(lRMlJl.ATION OF TilE PROBLEM

We consider time harmonic excitations acting on an infinite plate of linite thickness.
2h, and clastic constants, ).. JI and density, fl. We assul11e that the plate occupies the region
- -/ < C\'..1') <-I. - h < :: < h relative to a Cartesian co-ordinate system located within
the plate (Fig. I) and contains a number of inclusions and/or cracks. We further assume
that the external loads are either a finite beam of width 2h on the plate surl:lCe within the
tinite element zone or a source located at x = -XJ and both surfaces of the plate are
traction free in the exterior regions. In addition erack surfaces arc assumed to remain stress
free over the entire load cycle. To achieve this in reality the cracks would have to he initially
opened by some static preload or some other means and the dynamic solution would be
superimposed on this initial state. The source and all the field quantities are independent or
y and have a time dependence e -1'0'. which is suppressed in all the subseq uent representations.
When necessary, superscripts i and I' will be used to indicate variables associated with the
incident and radiated wave fields and subscripts [ and B will be used to distinguish betwcen

the interior and boundary variables.
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Fig. I. A Schematic diagram or the prohlcm geometry.
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2.1. Finite element model
The motion of the region. - L < :c < L. containing all the cracks/inclusions may be

perceived as forced vibration. Following the conventional discretization process in the finite
element methodology element equation satisfying the governing equations can be written
as

[K] {V} = {Q}. (1)

where [K] is the generalized stiffness matrix that also includes the inertia effect. {V} is the
vector of nodal displacements and {Q} is the consistent load vector. The stiffness matrix
for the in-plane harmonic propagation can be written as

(2)

where [N] is the matrix of interpolation functions. [B] is the strain displacement trans­
formation matrix. [C] is the plane strain constitutive matrix and (J) is the circular frequency.
In (2), the first and second integrals are typical stiffness and mass matrices used in con­
ventional finite element codes.

If the vector of nodal variables is separated into two parts: {VB} corresponding to the
nodal variables at the boundaries AD and Be (Fig. I) and {V.} corresponding to nodal
variables elsewhere, (I) can be wri tten as

(3)

where {Q,} and {QII} are the nodal forces corresponding to VI and VB, respectively. If {Q,}
and {QII} arc known, the displacements can be obtained by solving (3).

It should be noted that the matrix [K] becomes singular when the incident wave
frequency, w, coincides with the natural frequency of the interior region and care must be
taken to avoid these frequencies in the numerical implementation of the present technique.

2.2. Guided wave mode expansions
In the exterior region. the displacement field, V, consists of the incident wave field Vi

and the radiated wave field vr as follows.

V = Vi + Vr
, :c < - L. V = V r

, :c> L. (4a, b)

The radiated displacement fields satisfying the governing equations and the traction­
free boundary conditions can be expressed as symmetric and anti-symmetric Lamb waves
(Mal and Singh, 1990). In the subsequent representations superscripts S and A will be used
to distinguish between the symmetric and anti-symmetric fields.

The radiated displacement fields due to symmetric Lamb waves propagating in the
positive x-direction can be written as

WSr f [(2k;, -kn
2

sinh ("I"'2h) . .. ] i.t= L. S'" 2·k· h ( h) smh ("I", .z) -lk", smh ('1",2=) e ...•
m_1 I m sm "1m 1

p

= I SmW~
m-I

(5)
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and km is the real root of the symmetric dispersion equation

tanh ('1m;h) 4k;'1m l'Im;

tanh ('1mlh) = (2k;-k~)i'

where

'1mj = (k; -kif. j = 1.2.

(6)

Symmetric Lamb waves propagating in the negative x-direction are given by the complex
conjugate of (5). k , and k z are the longitudinal and shear wave numbers respectively and
Sm is the as yet unknown amplitude of the mth symmetric mode. U and Ware the
displacements in the x and =-directions respectively.

Similarly. the radiated displacement fields for the anti-symmetric Lamb waves pro­
pagating in the positive x-direction are given by

q

= '\' A u,\rL" n n
11=1

(7)

q

= L Allw~\r
n- ,

and kn is the real root of the anti-symmetric dispersion equation

tanh (fl,,;h) (2k; _k~)z

tanh (Y/" ,h) 4/.:,;r;., r/"z .

where

(8)

An is the as yet unknown amplitude of nth anti-symmetric mode.
The total radiated field is simply the sum of the symmetric and anti-symmetric fields

U' = Us, + U", W' = WSr + w,\r. (9)

Once the radiated displacement fields are known. corresponding stress fields can easily he
obtained by using stress-displacement relations.

The incident field, VI, can be any of the n guided wave modes or zero (when the load
is applied within the finite element zone). The solutions due to a number of incident guided
wave modes can be obtained by adding the solutions of individual guided wave modes.

2.3. Glohal solution
After obtaining the wave fields in the interior and exterior regions. the nodal dis­

placements are obtained by imposing the following continuity conditions of the dis­
placements and tractions at the boundary nodes

{VB} = {Vs}+{V'B}; onAD

{QB}={Qa}+{QB}; onAD

= {V'B}; on Be

={QB}; onBe.

(lOa. b)

(lla, b)
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RecaIl that the incident field is given and the radiated field is to be represented by a
complete set of known wave mode expansions (5) and (7). whose amplitudes remain
undetermined.

Suppose that the incident field is expressed by the first p +q wave mode expansions as

where. for M = \ to P

and for M = p+ I to p+q

p+q

Vi = L aM{VM}.
M_I

(12)

(13a)

(l3b)

and aM is the amplitude of the Mth guided wave mode. Then the nodal displacements at
the mesh boundaries for the incident wave have the form

p+q

VB = L aM{ VS,~I}.
M-I

(14)

where {VSM } denotes the column vector obtained from {VoW} evaluated at the boundary
nodes.

From the incident displacement field. one can calculate the stresses that would occur
on the finite clement boundaries. The tractions due to these stresses may be regarded as
known forcing functions on the finite element mesh. The nodal forces associated with these
tractions can be calculated following the conventional finite element technique. i.e. by
integrating the product of the tractions with the finite element displacement interpolations
over the mesh boundary. Let us denote the nodal forces on the mesh boundary associated
with {VlI,~I} by {QSM}' The load vector for the incident wave. the right-hand side ofeqn
(3), can be written as

p+q

Q~ = L aM{QsM}'
M-I

( 15)

Suppose that the radiated waves in question can be expressed with sufficient accuracy
with P symmetric and Q anti-symmetric modes in the form

1'+Q

vr = L bN{VN},
1'1-1

(16)

where b", are the unknown amplitudes to be determined. Analogously as for th.e incident
waves, the degrees of freedom at the boundary and the consistent load vectors associated
with the scattered displacements ofeqn (13) have the form,

1'''Q

V~ = L bN{ VSN}
IV-I

1'+Q

Q~ = L bN{QSN},
1'1-1

(17.18)

where {Qs,v} is the nodal force associated with {VSIV} in (17).
To enforce the stress and displacement continuity, we combine the boundary stresses

and displacements due to the incident and radiated waves as

p+q 1'+Q

{Vs} = {Vis} + {V's} = L aM{ VBM} + L blV { VBN}
M_I 1'1-1

(l9a)
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p~q P"Q

{QB)' = {QO} + {QB} = L G\I{QBM} + L b,{QBN}'
\1=1 ,=\

Combining (3) and (19), after some simplifications we can write

[A] {b} = {P}.

(l9b)

(20)

where

pl-q

[Pj = L aM({QBJ,}-[[KBB]-[KBd[KII]I[KIB]]U?B~t})
\I = I

(2la)

(21 b)

and b is a (P + Q) x I array of the still unknown coefficients hn .

[n (21), the applied load is assumed to be due to a guided wave source located at
x = - 00, i.e. {QI} in (3) is assumed to be a null matrix. [f the source is located within the
finite element zone, (21) should be adjusted properly.

Let m be the number of degrees of freedom on the boundary AD and Be. then [A j
has the dimensions m x (P + Q). Three cases of the relative dimensionality of the algebraic
system, (20) can be distinguished:

(I) m > P+ Q~overdeterminate.

(2) m = P+Q-eonsistent.
(3) m < P+ Q -underdeterminate.

The solution to (20) may be expressed as a least squares error minimization. Let us
dc/Inc an error function {f.} by

{t;} = [A]{ h} - {P}. (22)

The square of the error t;2 is constructed by multiplying (22) by its conjugate transpose
{I;*}", i.e.

.( ,.1. 2 _ {,.* I r r/.}
l"J - " { \.

- fh*\ I'[A*jl'[Aj1h\ _ {p.1T[Aj1h\ -(h.'. I'[A.jl'l pl. + f p.l. I'r pi
- l j l J ( l J l) I J I ) I ,. (23)

Minimizing the square of the error, /;2, with respect to undetermined coetllcients h,v
yields

(24)

Thus, the coefficient vector {h l of the radiated field is given by

(25)

For m ~ P+Q the matrix operation ([A·jT[A])-I[A·jT is the generalized inverse of
[A] and the uniqueness of the solution to (20) as given by (25) is assured (Lancaster, 1969).
The case m < P+Q does not seem to occur in a reasonably planned numerical work and
will not be pursued here. Once the coefficients b. are determined. the displacements and
stresses at any interior or exterior point can easily be obtained.

3. NUMERICAL RESULTS

The method discussed above has been implemented in a FORTRAN program. To
verify the program, normal surface displacement of a 2 mm thick aluminum plate due to a



Elastic wave scattering

Fig. 2. One quarter of the finite element mesh of the interior region. The top figure is for 176
elements and the bottom figure is for 272 elements.
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Fig. 3. Normal (vertical) surface displacement of a I mm thick aluminum plate due to normal
(vertical) surface line load at a distance of III mm. Solid line is for present numerical model. odots

(01 arc analytical results (Xu and Mal. 19K7).

normal surface line source at a distance of 10 mm is computed by this method and
compared with the analytical Green's function solution (Xu and Mal, 1987) in Fig. 3. The
homogeneous plate is first subdivided into two regions, an interior region and an exterior
region. The interior region is discretized into 176 uniform eight noded isoparametric
clements. One quarter of the discretized interior region is shown in the top of Fig. 2. Guided
wave modes are considered in the exterior region. Computed results from this analysis are
shown by the continuous line in Fig. 3. Results obtained by the Green's function approach
described in Xu and Mal (1987) are given by odots in Fig. 3. Further refining of the mesh
to 272 eight-noded isoparametric elements (quarter of the plate is shown in the bottom of
Fig. 2) didn't change the final results, so such refinement is not necessary for the uniform
plate analysis. The material properties used by Xu and Mal (1987) are shown in Table I.

q, and q2 are the quality factors which account for the viscoelastic properties of the
solid. In the prescnt analysis, quality factors are assumed to be 00; in other words, the
material is assumed to be purely elastic. Agreement between the numerical and analytical
results can be seen to be excellent; very small discrepancies can be attributed to the different
values of the viscoelastic parameters in the two analyses.

For all the subsequent analyses, the incident field is assumed to have the following form:

P =f(t)F(x),

Table I. Material properties

(26)

Materials
Density
gm ec- I

P-wave velocity
mm 1lS-1

SV-wave velocity
mm ps-'

Quality factors
q, q:

Aluminum
Rivet/weld

\.SO
2.71

4.00
6.37

2.00
3.16

520 300
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Fig. 4. Variation of source function with time and its Fourier transform.
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"oCf.I_05

-= 05..

t ~ T

T~t~T+r.

t ~ T+r

(27a)

F(x) = {exp [- {(x+d)/b} l
0,

Ixl ~ h

Ixl ~ b'
(27b)

where /(t) and F(x) are the temporal and spatial distributions of applied load. In (27a),
..A" defines the peak value of the load. r is the duration of the load and T is the time of
load application. In (27b). h is the half-width of the applied load and c/ is the offset of the
center of the load from the origin as shown in Fig. 1. The sharpness of the load can be
increased by decreasing r but keeping If constant. In the results presented here. the peak
value of the load, A, is taken as 1 kN mm" I, the duration of the load. r, is taken as 2 ItS
and the time of loading T is taken as 1 Its. The variation of the loading function with time,
/(1). and its Fourier transform, F(w) arc shown in Fig. 4.

In Fig. 5 the bottom figure shows the problem geometry and the top figure shows the
lIuarter of the finite clement mesh of the interior region. The mesh has 240 eight-noded
isoparametric clements. Element size is selected such that the clements are not too big
compared to the wave length of the induced elastic waves in the plate. For a detailed

c
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z
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2h <:=t===~--1I---x

f-=2. =-1

Exterior R-Olo:1 Interlo~LReolon !CExterlor Reslon

Fig. 5. Schematic diagram of a cracked plate geometry (bottom figure) and one quarter of the finite
clement mesh of the interior region (top figure). The crack tip is denoted by point C in the top

figure.
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Fig. 6. Surf;lce displacement ofa cr;lcked plate due to a vertical surface load with a Gaussian spatial
v;lrialion;ls shown in Fig. 4. and eqn (27b). Top and bollom rows are displacements at points (2.0.
1.0) and (10.0. 1.0) respectively. Left column shllws the horizontal displal-ement and right column
shows the lIertical displacement. Solid line shows the displacement due to a cracked plate and dashed

line is for the uncracked plate.

discussion of the clement size requirement. readers are referred to Kundu and Hassan
(1987) and Rom~tncl and KlIndu (1990). The crack tip is denoted by point C in the mesh.
Elements arc relined near the crack tip as shown. Elements adjacent to the erack tip are
changed to quarter point elements to handle the stress singularity (Henshcl and Shaw,
1975; Barsoum, 1976). One layer of transition elements (Lynn and Ingraffia, 1978) is also
placed between quarter point elements and conventional eight noded elements to obtain
more accurate results. Thus the requirement ofa very fine mesh near the crack tip is avoided.
Dimensions of various quantities are given in Fig. 5. No significant change in the result is
obtained when the length of the interior region is increased. Figure 6 shows the surface
response of the cracked plate shown in Fig. 5.

Solid and dotted lines in Fig. 6 correspond to the surface displacements of cracked
and uncracked plates respectively. Left and right columns show two components of the
displacement and two rows correspond to two points on the surface, as mentioned in the
figure caption. From Fig, 6 it is evident that the number and positions of the minima of
the displacement spectra, which are of primary interest in the NDE experiments, change
significantly by the presence of the crack. Changes in the magnitude of the displacement
spectra, however, are small. The effect of the crack can be felt strongly even at a relatively
large distance (five times the plate thickness) from the crack. This is due to the fact that
the material properties of the plate are assumed to be purely elastic and there is no geometric
damping for the guided waves.

Effect of the crack orientation and the interaction effect between the cracks are then
studied and shown in Fig. 9 for the crack geometries shown in Fig. 7. One quarter of the
finite clements mesh of the interior region for every problem geometry of Fig. 7 is shown
in Fig. 8. For the single crack problem (both horizontal and vertical cracks) the region is
discretized into 256 elements. For the double crack geometry this number is increased to
264 elements. Discretization of the right side of the plate is kept unchanged (similar to the
middle figure) but in the left side, elements are refined near the second crack as shown at
the bottom of Fig. 8. Crack tip positions are indicated by point C in every mesh. Here also,
quarter point elements and transition elements are used as mentioned in the previous case.
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Fig. 7. Schematic diagram of different cracked plates whose responses are given in Fig. 9.
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c

Fig. 8. Onc quarter of the finite element mesh of the intcrior regions of the three problem geometries
shown in Fig. 7. C indicatcs the crack tip position.
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Con ....ergence of the solution was studied by changing the coordinate values of different
nodes. No significant change was noted.

Cracks in an object reduces its stiffness. So surface displacements are affected by the
presence of internal cracks. Karim and Kundu (1990) found that for a half-space the
displacement spectra become larger in the presence of a crack. However, for the plate
problem considered here. the displacements of the cracked plate are sometimes found to be
smaller than that of an uncracked plate.

The effect of a rivet. as shown in Fig. 10, on the surface response of a plate. is shown
in Fig. II. The finite element mesh shown at the foot of Fig. 2 is used here. properly
changing the material properties of the elements which occupy the rivet position. Properties
of the rivet materials. which usually have a higher stiffness than the plate itself. are shown
in Table I. The magnitude of the displacement spectra is changed significantly. This is due
to the large scattering surface and a number of sharp comers in the rivet.
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WELD PROBUM

2b • 2 •• , d • 3 •• , 2•• 1 ••. 2h • 2 •• , 2L • 22 ••

z
Finite Be.m

Ellterlor Aeglo: 1

B

1----4----x

2.

Interlo~LA-e-g-IO-n---leEllterlorAeglon

Fig. 12. Schematic diagram of a welded plate geometry.

The surface response of two aluminum plates joined by a weld (properties in Table I),
as shown in Fig. 12. is shown in Fig. 13. Here also the finite element mesh shown at the
bottom of Fig. 2 are used with the appropriate change of material properties of the elements
in the weld position. The magnitude of the displacement spectra can be seen to be decreased
because of the stiffer welded joint. The effect of the weld is greater on the horizontal
displacement than on the vertical displacement because of the vertical orientation of the
weld.



Elastic wave scattering 2367

1.20.3 0.11 0.11
hequeaey (Mbzl

0.05

I
I

I
I I I I

_____ ~-------~------~- I
I t I I
I , I I
I , I I
I I , f_____ ~ L ~ l

I I I I
I I I I
I , I ,
I I I I

_j L j ,

I I I I
I I I

I I
}\ II

0.00 +----+--.......:~~~:=:'Oo:f::>.-.......o.~
0.0

0.15

0.10

0.20

1.20.3 0.11 0.11
Frequeaey (Khz)

0.00 +------i-...:...---+--=:::.:....+-=:::...:::..:..:l~

0.0

..
=
~

~ 002
u•Q..
is

Fig. 13. Left and right columns show the horizontal and normal surface displacements at point (2.0.
1.0) for the plate geometry shown in Fig. 12. Dashed line shows the displacement at the same point

in a homogeneous plate.

4. CONCLUDING REMARK

A versatile technique based on the global-local approach is presented to simulate the
surface source/surface receiver ultrasonic non-destructive evaluation experiments. The
method presented here can be used to calculate the response of a plate containing cracks
and inclusions subjected to any type of time-dependent loading such as impact. cyclic. etc.
Results presented here sometimes show significant and sometimes insignificant differences
between responses of homogeneous and inhomogeneous (due to internal cracks or
inclusions) plates.
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